Mathematical Modeling of Weather-Induced Degradation of Polymer Properties

S. H. HAMID* and W. H. PRICHARD
Chemistry Department, The City University, Northampton Square, London ECIV OHB, England

SYNOPSIS

Abstract

Weather-induced degradation of polymer properties is caused by all the factors of weather, which include solar radiation, temperature, humidity, wind, rain, environmental pollutants, thermal cycling (cold night and hot days), and sand abrasion. Linear low-density polyethylene (LLDPE) is exposed to natural weather, and degradation is monitored by the mechanical properties testing system, Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). Three mathematical models were developed with weather parameters as independent parameters and mechanical property (tensile strength), chemical change (carbonyl growth), and thermal property (percent crystallinity) as dependent parameters. The mechanical property was found to be more dependent on the ultraviolet (UV) portion of the total solar radiation, chemical change was found to be synergestically effected by UV and total solar radiation, and change in thermal property was because of UV, total solar radiation, and temperature. Humidity and other weather parameters were found to play a less significant role in the weather-induced degradation of LLDPE properties.

INTRODUCTION

Models are representative of objects, processes, or systems that are to be described or whose patterns of behavior are to be analyzed. These models are mathematical if the representations are mathematical relationships. The mathematical model solution in many cases requires a computational/simulation approach. It is now widely acknowledged that, along with the traditional and theoretical methodologies, advanced work in various areas of science and engineering has come to rely critically on the computational/simulation approach.

The weathering of plastics is dependent on almost all parameters of environment. The weather is so variable from time to time and from place to place that even comparison among outdoor tests obtained at different seasons, years, or locations have been inadequate. A mathematical approach in describing the weather-induced degradation of plastics is con-

[^0]sidered for the purpose of experimental data presentation, prediction, and understanding of this complex phenomena. ${ }^{2}$ The previous publications on this subject have already demonstrated that the weathering of plastic is inherently related to weather variables. ${ }^{3-6}$

Regression analysis is a statistical technique for modeling and investigating the relationship between the dependent and independent variables. Its broad appeal results from the conceptually simple process of using an equation to express the relationship between a set of variables. In the field of plastic weathering, regression analysis can be used to build a model that expresses degradation in significant properties of plastic as a function of weather parameters.

In this work, statistical techniques will be used to determine the significant weather parameters influencing the decay in important properties of plastic. Based on these parameters, three different mathematical models will be developed representing the degradation in mechanical property (tensile strength), chemical structure (carbonyl groups), and thermal property (percent crystallinity). Selection of weather parameters significant for a specific model will be accomplished using the stepwise
regression analysis technique. ${ }^{7}$ Finally, mathematical models will be developed using multiple linear regression and residual analysis will also be presented to evaluate the goodness of fit. In the present analysis, computation has been carried out using a statistical analysis system (SAS) software package on mainframe IBM 3033 computer.

EXPERIMENTAL

Degradation of plastics during outdoor exposure is influenced to varying degrees by all natural climatic phenomena. Heat, radiation (UV and IR), rain, humidity, and atmospheric contaminants all contribute to the degradation of plastics subjected to outdoor exposure. None of these phenomena is constant in one location, and weather conditions vary widely with location. To attain maximum accuracy in predicting the useful life of an outdoor plastic, all aspects of the anticipated environment to which it will be exposed should be considered. This is best accomplished by conducting actual outdoor exposure

Figure 1 Frequency histogram and polygon of average monthly temperature (at).

Figure 2 Frequency histogram and polygon of average monthly humidity (ah).
trials. ${ }^{8}$ In this work, LLDPE was selected for studying the effects of the severe natural weather of Dhahran, Saudi Arabia, on its significant properties. Weathering trials in hot climatic regions (such as Saudi Arabia) are of particular importance. Almost invariably, the high levels of temperature, humidity, and solar radiation found in such regions prove more aggressive to plastic materials than do the conditions in cold regions (such as England). Thus, as well as being of intrinsic interest, tropical and subtropical exposure trials are a means of providing accelerated exposure sites as compared to colder regions like England.

In order to assess the durability of polymer, it is mandatory to expose it to natural weather or to simulated conditions of UV radiation, temperature, rain, and humidity. It is unlikely that any one meteorological element is the sole contributor to the degradation of plastics exposed to outdoor conditions. The complete phenomenon of weathering involves the combined effects of photo and thermally initiated oxidation and ozonolysis, associated with the purely physical effects of wind, temperature variation, and

Figure 3 Frequency histogram and polygon of average monthly UV radiation (uv).
humidity variation. These work together in the breakdown of the material.

A comparison of the levels of total solar radiation received in various parts of world revealed that Saudi Arabia receives a high dose of total solar radiation. ${ }^{8}$ In Saudi Arabia, the heavy dose of solar radiation and temperature reaching up to $50^{\circ} \mathrm{C}$ in summer and severe thermal cycling would result in extreme thermal stresses in the specimen. Such a combination of very high UV dose, temperature extremes, and thermal cycling proves to be extremely aggressive to the plastic and results in a much faster rate of degradation of plastic than is observed in other parts of the world. Dhahran's weather could be considered as a naturally accelerated laboratory to evaluate the weathering resistance of plastics.

Materials

The polymer used in the study was linear low-density polyethylene (LLDPE) in pellet form containing no UV stabilizer and identified as Ladene

FH10018 (Saudi Basic Industries Corporation [SABIC]). The polymer grade used is a slip, antiblock, and antioxidant-modified LLDPE resin (SABIC Marketing, 1984).

The test sheets were compression-molded using a Carver laboratory press for films and Wabash 75 tons press for plaques in accordance with the American Society for Testing Standard Material (ASTM) standard (ASTM Standards D-1928, 1980). The press is provided with platens that can be heated to $200^{\circ} \mathrm{C}$ using electrical resistance heaters. It is designed so as to provide maximum heat without the occurrence of "hot spots" and maintains the rigidity of the plates. Cooling was accomplished by passing water through channels provided for this purpose. The chases used were single-cavity picture frame molds with dimensions appropriate to the production of test sheets, 140 micron $6 \times 6 \mathrm{in}$. films and $1 / 16 \times 16 \times 16$ in. plaques. Flat backing plates for the chases were strong enough to resist warping or distortion by molding. Stainless steel plates of the same length and width as the outside chase dimension were employed. Aluminum foil 0.05 mm thick

Figure 4 Frequency histogram and polygon of cumulative UV radiation (cu).

Figure 5 Frequency histogram and polygon of average monthly total solar radiation (rd).
was used as a parting agent in the molding operation. Test specimens were prepared from the test sheets using blanking die but without disturbing the thermal history introduced during sheet preparation, which provided specimens of an acceptable quality, as judged by visual examination.

Meteorological and Radiation Environment of Test Site

Dhahran ($26.32^{\circ} \mathrm{N}, 50.13^{\circ} \mathrm{E}$) is situated just north of the Tropic of Cancer on the eastern coastal plain of Saudi Arabia and is close to 10 km inland from the Arabian Gulf. Despite its nearness to the coast, Dhahran is located in very much a desert environment. The environment of the site plus the limited human activities and population mean that the radiation characteristics of the atmosphere are not significantly altered by manmade pollution sources.

Four distinct seasons cannot be identified in the classical midlatitude sense. Rather, the year may be divided into a very hot period and a cooler period.

For the Dhahran region, this division may be set at the maximum change between monthly mean temperature, giving the separation into the two 6 -month intervals: May to October (hot) and November to April (cooler).

Annual precipitation totals are very low, typically around 80 mm in Dhahran and somewhat less inland; 60% falls in December/January, and there is no rain at all from June to October during most of the years. Wind speed show a clear diurnal variability within the typical range from near zero to 10 m / s; there is no regular diurnal march. The synoptic wind direction exhibits a long period of more or less constant direction between north and northwest, though this synoptic flow is overlaid with a sea/ land breeze. An additional feature with some longevity is the tendency for the wind to swing to the east, in particular, to the quadrant between east and south.

The parameter of most general interest in Saudi Arabia is always the temperature. At Dhahran, monthly mean temperatures reach close to $37^{\circ} \mathrm{C}$ for both July and August, with daily maxima often ap-

Figure 6 Frequency histogram and polygon of cumulative total solar radiation (cr).

Figure 7 Computer output (SAS) of stepwise forward selection procedure applied to LLDPE tensile strength data.
proaching the $50^{\circ} \mathrm{C}$ mark. However, the eastern coastal climatic region of Saudi Arabia is a region where significant year-end cooling is in evidence and monthly mean temperatures in the cooler season
are some $20^{\circ} \mathrm{C}$ lower than in the hottest months. Despite the desert location, the nearness of the very shallow Arabian Gulf (average depth 30 m) means that relative humidity values are relatively high. The

Figure 8 Computer output (SAS) of stepwise backward elimination procedure applied to LLDPE tensile strength data.
relative humidity exhibits a large diurnal cycle on the order of 60% throughout the year, with daily maxima often rising over the 80% level during most months.

The desert location, the prevailing wind direction, and the relatively strong winds often experienced all combine to mean that the lower atmosphere al-
most always possesses a significant dust/sand content. A detailed assessment of the atmospheric turbidity has been undertaken. ${ }^{9}$

Natural Exposure

The outdoor weathering of plastics can be used to evaluate the stability of plastic materials that are

Figure 8 (continued from the previous page)
exposed to varied meteorological influences. In this study, the outdoor weathering of LLDPE was carried out according to ASTM Standard (1979) , and British (1981) standards on exposure to natural weathering were also taken into consideration.

The racks were placed in such a location that no shadow from a neighboring obstruction with an angle of elevation greater than 20° fell on any sample. The racks were adjusted so that the exposed surfaces of the samples were at an angle of 45° to the horizontal and facing south. ${ }^{10}$ Racks were constructed of untreated wood, which is recommended for desert areas (ASTM Standard D-1435, 1979).

The samples for exposure testing were mounted on holders, and the evaluation samples were cut in such a way that the mounting edges were removed in cases where the test results might otherwise be affected. The effect of backing was considered important in these weathering trials, and the rack was so designed to expose the samples from both sides. Backing contributes to the degradation process with regard to reflectance, heat absorption, etc. The total number of samples was 60 , and withdrawal frequency was maintained on a monthly basis for a total exposure of 1 year (1986). Five samples were withdrawn at each interval, and one sample was exposed for the complete 12 months except when
withdrawn for FTIR analysis. Similarly, five samples were withdrawn each for thermal analysis (DSC) and mechanical testing.

Since one can study exactly the same portion of the sample, spectral subtractions are made on a one-to-one basis during the early stages of the reaction. The resultant difference in spectra can be magnified to bring out small spectral features. The control samples were retained for determination of original and final control values. The control and withdrawn samples were retained at standard conditions of 23 $\pm 1^{\circ} \mathrm{C}$ and $50 \pm 2 \%$ relative humidity. They were covered with inert wrapping to prevent light exposure during the aging period.

MODELING

Variable Description

The independent variables considered are the significant weather parameters. Mathematically, Degradation (DG)

$$
\begin{equation*}
=\mathrm{F}(\mathrm{AT}, \mathrm{AH}, \mathrm{UV}, \mathrm{CU}, \mathrm{RD}, \mathrm{CR}) \tag{1}
\end{equation*}
$$

where $\mathrm{DG}=$ degradation of significant plastic property, AT = average monthly temperature (${ }^{\circ} \mathrm{C}$), AH

Figure 9 Computer output (SAS) of stepwise regression procedure applied to LLDPE tensile strength data.
$=$ average monthly relative humidity (\%), UV = average monthly UV radiation dose (Langleys), $\mathrm{CU}=$ cumulative monthly UV radiation (Langleys),
$\mathrm{RD}=$ average total solar radiation (Langleys), and $\mathrm{CR}=$ cumulative total solar radiation (Langleys). The descriptive statistical analysis of weather

$\mathrm{N}=13$	REGRESSION MODEI.S FOR		DEPENDENT V	VARIABLI: TS
	MODEL: MOD			
NUMBER IN	R-SQUARE	C(P)	VARIABLES	IN MODEL
MODEL				
1	0.04273724	4039.404	AH	
1	0.23478987	3227.185	UV	
1	0.25087678	3159.151	RD	
1	0.32497833	2845.765	AT	
1	0.93928701	247.764	CR	
1	0.94188759	236.766	Cu	
2	0.28997257	2995.810	UV RD	
2	0.33608978	2800.773	AT UV	
2	0.33939210	2786.807	AT RD	
2	0.39532613	2550.254	$U V A H$	
2	0.41834753	2452.893	AH RD	
2	0.69210519	1295. 132	AT AH	
2	0.96022382	161.219	AH CR	
2	0.96137511	156.350	CU AH	
2	0.97145251	113.731	CU CR	
2	0.97956231	79.433970	AT CR	
2	0.98001899	77.502590	AT CU	
2	0.99561044	11.564077	RO CR	
2	0.99603117	9.784754	CU RE	
2	0.99603223	9.780297	UV CR	
2	0.99635160	8.429607	CU UV	
3	0.35679148	2715.223	AT UV RD	
3	0.46363196	2263.379	UV AH RD	
3	0.69647921	1278.634	AT UV AH	
3	0.69785458	1272.817	AT AH RD	
3	0.97199261	113.447	CU AH CR	
3	0.98002991	79.456421	AT AH CR	
3	0.98054565	77.275273	AT CU AH	
3	0.98215082	70.486789	AT CU CR	
3	0.99603963	11.748981	UV RD CR	
3	0.99635165	10.429392	CU UV RD	
3	0.99646937	9.931535	AH RD CR	
3	0.99671527	8.891603	CU AH RD	
3	0.99708236	7.339136	UV AH CR	
3	0.99711775	7.189460	CU UV CR	
3	0.99720840	6.806094	CU UV AH	
3	0.99734192	6.241402	CU RD CR	
3	0.99772904	4.604229	AT RD CR	
3	0.99790438	3.862695	AT CU RD	
3	0.99835219	1.968823	AT UV CR	
3	0.99843059	1.637278	AT CU UV	

Figure 10 Computer output (SAS) of RSQUARE and Mallow's Cp procedure applied to LLDPE tensile strength data.
data was carried out with the purpose of viewing the frequency distribution and determining some potential outliers that can misinterpret the total behavior. ${ }^{11}$ Frequency distribution and histograms of weather parameters are presented in Figures 1-6 for AT, AH, UV, CU, RD, and CR, respectively.

Variables Selection

The well-established theoretical background of weather-induced degradation of polyethylene indicate that the regressor variables (weather parameters) included are influential. Some of the weather

4	0.70551227	1242.432	AT	UV A	AH	RD
4	0.98394298	64.907482	AT	CU A	AH	CR
4	0.99719686	8.854882	UV	AH	RD	CR
4	0.99726112	8.583107	cu	UV A	AH	RD
4	0.99734420	8.231779	cu	UV RD	RD	CR
4	0.99736602	8.139497	cu	UV A	AH	CR
4	0.99737298	8.110047	CU	AH R	RD	CR
4	0.99774982	6.516351	AT	AH R	RD	CR
4	0.99794352	5.697150	AT	CU A	AH	RD
4	0.99818515	4.675249	AT	CU R	RD	CR
4	0.99836034	3.934375	AT	UV	AH	CR
4	0.99845255	3.544391	AT	cu	UV	AH
4	0.99847154	3.464060	AT	CU	UV	CR
4	0.99856768	3.057494	AT	cu	UV	RD
4	0.99857478	3.027456	AT	uv	RD	CR
5	0.99738936	10.040779	Cu	UV	AH	RD CR
5	0.99838499	5.830128	AT	CU	AH	RD CR
5	0.99853777	5.183987	AT	Cu	UV	AH CR
5	0.99857502	5.026441	AT	CU	UV	RD CR
5	0.99857698	5.018147	AT	UV	AH	RD CR
5	0.99858121	5.000255	AT	CU	UV	AHं RD
6	0.99858127	7.000000	AT	cu	UV	AH RD

Figure 10 (continued from the previous page)
parameters are deleted from the discussion either because of their insignificance or because their effect is incorporated in other parameters considered for this study. The discarded parameters include maximum and minimum temperature and humidity. Average temperature and humidity are considered to incorporate the effect of minima and maxima.

Building a regression model that includes only a subset of the available regressors involves two conficting objectives: First, it is desirable to have a model that includes as many regressors as possible so that the information content in these factors can influence the predicted values of the dependent variable. Second, it is recommended to include as few regressors as possible because the variance of the prediction variable increases as the number of regressors increase. In this work, effort is made to find a model that is a compromise between these two objectives.

The selection of variables considered significant for the mathematical model was based on the stepwise regression methods. Evaluation of all possible regressions for determining the significant independent variables is practically not possible. ${ }^{12}$ To overcome this burdensome computation, various methods have been developed for evaluating only a small number of subset regression models by either adding or deleting regressors one at a time. These methods
are referred to as a stepwise-type procedure and are classified into forward selection, backward elimination, and stepwise regression. Stepwise uses the selection strategies in choosing the variables for the models it considers. ${ }^{13}$

The forward selection technique of the stepwise procedure begins with the assumption that there are no regressors in the model other than the intercept. An effort is made to find an optimal subset by inserting regressors into the model one at a time. The first regressor selected for entry into the equation is the one that has the largest simple correlation with the response variable. The chosen regressor will produce the largest value of the F-statistics for testing significance of regression. This regressor is entered if the F-statistics exceed a preselected F-value, say $F_{\text {IN }}$ (or F-to-enter). The second regressor chosen for entry is the one that now has the largest correlation with the response variable after adjusting for the effect of the first regressor entered in the model. These correlations are referred to as partial correlation. In general, at each step, the regressor having the highest partial correlation with the response variable is added to the model if its partial F-statistics exceeds the preselected entry level $F_{\text {IN }}$. The procedure terminates either when the partial F-statistic at a particular step does not exceed $F_{\text {IN }}$ or when the last candidate regressor is added to the model. ${ }^{14}$

Figure 11 Computer output (SAS) of general linear regression model procedure applied to LLDPE tensile strength data.

Forward selections begin with no regressors in the model and attempts to insert variables until a suitable model is obtained. Backward elimination attempts to find a good model by working in the opposite direction. It begins with calculating statistics for a model including all of the independent variables. Then, the partial F-statistic is computed for each regressor as if it were the last variable to enter the model. The smallest of these partial F -
statistics is compared with a preselected value, $F_{\text {OUT }}$ (or F-to-remove), for example, and if the smallest partial F-value is less than $F_{\text {OUT }}$, that regressor is removed from the model. Now, a regression model with one less independent variable is fit, the partial F-statistics for this new model calculated, and the procedure repeated. The program terminates when the smallest partial F-value is not less than the preselected cutoff value $F_{\text {OUT }}$. Stepwise regression is a

Figure 12 Residual and normal probability plot of LLDPE tensile strength (ts) model.
modification of forward selection in which at each step all regressors entered into the model previously are reassessed via their partial F-statistics. A regressor added at an early step may now be redundant because of the relationships between it and regressors now in the equation. If the partial F-statistic for a variable is less than $F_{\text {OUT }}$, that variable is dropped from the model. Stepwise regression requires two cutoff values, $F_{\text {IN }}$ and $F_{\text {OUT }}{ }^{14}$

The coefficient of multiple determination (R^{2}) has been widely used as a measure of the adequacy of a regression model. Generally, it is not straightforward to use R^{2} as a criterion for choosing the number of regressors to include in the model. However, for a fixed number of variables, R^{2} can be used to compare the generated models. Mallows has proposed a criterion that is related to the mean square error of the fitted values and it is called Mallow's C_{p} statistic. ${ }^{15}$ Generally, small values of C_{p} are desirable; C_{p} values less than the number of independent variables represent a model with lower total errors. ${ }^{15}$ The RSQUARE procedure of SAS was used
to determine R^{2} and Mallow's C_{p} statistic for each model. The program evaluates each combination of a dependent variable with the independent variables. If K independent variables are specified, the program evaluates each of the 2^{K-1} linear models: K of the models includes one independent variable, $K(K-1) / 2$ of the model includes two independent variables, and so on. For each model evaluated, the program prints the unadjusted R^{2} value and Mallow's C_{p} statistic. ${ }^{16}$

Model I

Mechanical properties of plastics are important ultimate indicators of plastic behavior when exposed to weather. Mathematically,

Degradation rate α drop in mechanical properties
Therefore, the dependence of mechanical property (tensile strength [TS]) on weather parameters is presented in a functional relationship of the form

$$
\mathrm{TS}=\mathrm{F}(\mathrm{AT}, \mathrm{AH}, \mathrm{UV}, \mathrm{CU}, \mathrm{RD}, \mathrm{CR})
$$

Variable Selection

The SAS stepwise regression algorithm was used, and the results of the forward selection procedure are presented in Figure 7. In this program, cutoff value $F_{\text {IN }}$ is specified by choosing a type I error rate, α. Therefore, the regressor with highest partial correlation with a dependent variable is added to the model if its partial F-statistic exceeds $F_{\alpha, 1, n-p}$. In this work, $\alpha=.05$ to determine $F_{\text {IN }}$. It is shown in Figure 7, step 1, that the regressor most highly correlated with tensile strength of plastic is cumulative UV (CU). The F-statistics associated with the model using CU is $F=178.29>F_{.05,1,11}=4.48$; CU is added to the equation. At step 2, the regressor having the largest partial correlation with TS (or the largest partial F statistic given that CU is in the model) is UV, and since the partial F-statistic is F $=149.28$, which exceeds $F_{\mathrm{IN}}=F_{.05,1,11}=4.96$, UV is added to the model. In the third step, AT exhibits the highest partial correlation with TS. The partial F statistic is 11.92 , which is larger than $F_{\text {IN }}=F_{.05,1,9}$ $=5.12$, and so AT is added to the model. At this point, the remaining candidate regressors are AH , RD, and CR, and for which the partial F-statistic does not exceed $F_{.05,1,8}=5.32$, so the forward selection procedure terminates with

$$
\mathrm{TS}=220.51-0.58 \mathrm{AT}-2.12 \mathrm{UV}-0.84 \mathrm{CU}
$$

as the final model.

FORWARD SELECTION PROCEDURE FOR DEPENDENT VARIABLE CA						
STEP 1	VARIABLE CU ENTERED		$\begin{aligned} & \text { R SQUARE }=0.97945921 \\ & C(P)=11.80734240 \end{aligned}$			
	DF SUM	OF SQUARES	MEAN SQUARE	F	PROB>F	
REGRESSION	1	7.23124189	7.23124189	524.52	0.0001	
ERROR	11	0.15165042	0.01378640			
TOTAL	12	7.38289231				
	B value	STD ERROR	TYPE IISS	F	PROB>F	
INTERCEPT	0.44908868					
CU	0.01089143	0.00047556	7.23124189	524.52	0.0001	
BOUNDS ON C	CONDITION NUMBE		1,	1		
STEP 2	VARIABLE UV ENTERED		$\begin{array}{ll} \text { R SQUARE }= & 0.98776628 \\ C(P)= & 5.39247629 \end{array}$			
	DF SUM	OF SQUARES	MEAN SQUARE	F	PROB>F	
REGRESSION	2	7.29257207	3.64628603	403.71	0.0001	
ERROR	10	0.09032024	0.00903202			
TOTAL	12	7.38289231				
	B value	STD ERROR	TYPE \\| SS	F	PROB >7	
INTERCEPT	0.29336879					
UV	0.01186522	0.00455335	0.06133017	6.79	0.0262	
CU	0.01061289	0.00039949	6.37450356	705.77	0.0001	
BOUNDS ON C	CONDITION NUMBE	ER: $\quad 1.07$	7119, 4.30	08475		

NO OTHER VARIABLES MET THE 0.0500 SIGNIFICANCE LEVEL FOR ENTRY
SUMMARY OF FORWARD SELECTION PROCEDURE FOR DEPENDENT VARIABLE CA

	VARIABLE	NUMBER	PARTIAL	MODEL	
STEP	ENTERED	IN	R**2	R**2	$C(P)$
1	Cu	1	0.9795	0.9795	11.8073
2	uv	2	0.0083	0.9878	5.3925
	VARIABLE				
STEP	ENTERED	F	PROB >5	LABEL	
1	CU	524.5199	0.0001	CUMULATIVE UV	RADIATION
2	UV	6.7903	0.0262	UV RADIATION	

Figure 13 Computer output (SAS) stepwise forward selection procedure applied to LLDPE carbonyl data.

The backward elimination algorithm of SAS was also used, and the results are presented in Figure 8. In this run, cutoff value $F_{\text {OUT }}$ is chosen as $\alpha=.05$. Thus, a regressor is dropped if its partial F-statistic is less than $F_{.05,1, n-p}$. Step 0 shows the results of fitting the full model. The smallest partial F-value is
$F=0.00$, and it is associated with CR. Thus, since $F=0.00<F_{\text {OUT }}=F_{.05,1,6}=5.99, \mathrm{CR}$ is removed from the model. At step 1, the results of fitting a five-variable model involving (AT, AH, RD, UV, CU) are presented. The smallest partial F-value in this model, $F=0.07$, is associated with AH. Since

Figure 14 Computer output (SAS) of stepwise backward elimination procedure applied to LLDPE carbonyl data.
$F=0.07<F_{\text {OUT }}=F_{.05,1,7}=5.59, \mathrm{AH}$ is removed from the model. Similarly, in step 2, RD is removed. At step 3, the results of fitting the three-variable
model involving (AT, UV, CU) are shown. The smallest partial F-statistic in this model is $F=11.92$, associated with AT, and since this exceeds $F_{.05,1,9}$

Figure 14 (continued from the previous page)
$=5.12$, no further regressor can be removed from the model. Therefore, backward elimination terminates, yielding the final model

$$
\mathrm{TS}=220.51-.58 \mathrm{AT}-2.12 \mathrm{UV}-.84 \mathrm{CU}
$$

Figure 9 presents the results of using the SAS stepwise regression algorithm. The level for either adding or removing a regressor is specified as 0.05 . At step 1 , the procedure begins with no variables in the model and tries to add CU. Since the partial F-sta-
tistic at this step exceeds $F_{\mathrm{IN}}=F_{.05,1,11}=4.48, \mathrm{CU}$ is added to the model. At step 2, UV is added to the model, and at step 3, AT is incorporated in the model. At this point, the remaining candidate regressors are (RD, AH, CR), which cannot be added because its partial F-value does not exceed preset limits. Therefore, stepwise regression terminates with the model

$$
\mathrm{TS}=220.51-.58 \mathrm{AT}-2.12 \mathrm{UV}-.84 \mathrm{CU}
$$

It is noticed that the model developed by forward

Figure 15 Computer output (SAS) of stepwise regression procedure applied to LLDPE carbonyl data.
selection, backward elimination, and stepwise regression techniques has resulted in the same intercept, independent variables, and the coefficients of independent variables.
R^{2} and Mallow's C_{p} values were determined using the RSQUARE procedure of the SAS software package, and the results are shown in Figure 10. It is obvious from the table that the best combination

$N=13$	regression models for dependent variable: ca MODEL: MODELI			
NUMBER IN MODEL	R-square	$C(P)$	VARIABLES	in model
1	0.12435079	878.012	uv	
1	0.12548598	876.862	AH	
1	0.13525087	866.971	RD	
1	0.18936007	812.160	AT	
1	0.97893633	12.337015	CR	
1	0.97945921	11.807342	CU	
2	0.17018348	833.585	UV RD	
2	0.19244490	811.035	AT UV	
2	0.19427626	809.180	AT RD	
2	0.38343679	617.564	UV AH	
2	0.40230088	598.455	AH RD	
2	0.67246416	324.786	At Ah	
2	0.97896469	14.308279	AH CR	
2	0.97957215	13.692939	CU AH	
2	0.98041009	12.844124	CU CR	
2	0.98094481	12.302463	AT CR	
2	0.98101096	12.235461	AT CU	
2	0.98720821	5.957790	CU RD	
2	0.98751887	5.643099	RD CR	
2	0.98776628	5.392476	CU UV	
2	0.98814748	5.006325	UV CR	
3	0.21219935	793.024	AT UV RD	
3	0.44469444	557.51 ?	UV AH RD	
3	0.67257128	326.678	AT UV AH	
3	0.67283251	326.413	AT AH RD	
3	0.98102544	14.220796	AT CU CR	
3	0.98262385	12.601638	CU AH CR	
3	0.98528621	9.904726	AT AH CR	
3	0.98557321	9.614007	AT CU AH	
3	0.98809344	7.061071	CU RD CR	
3	0.98826054	6.891804	At CU RD	
3	0.98839248	6.758148	AT RD CR	
3	0.98889384	6.250283	AT CU UV	
3	0.98910196	6.039460	AT UV CR	
3	0.98911894	6.022265	CU UV CR	
3	0.98918490	5.955448	CU UV RD	
3	0.98978495	5.347608	UV RD CR	
3	0.99112755	3.987586	AH RD CR	
3	0.99123967	3.874009	CU AH RD	
3	0.99173196	3.375336	UV AH CR	
3	0.99176567	3.341189	CU UV AH	

Figure 16 Computer output (SAS) of RSQUARE and Mallow's Cp procedure applied LLDPE carbonyl data.
of R^{2} and Mallow's C_{p} is for three-variable model with AT, CU, and UV as independent variables. The value of R^{2} is .998 , which is extremely good. The C_{p}
value is 1.64 , which is minimum of all combinations evaluated and also less than independent variables considered.

Figure 16 (continued from the previous page)

Regression Analysis

A multiple regression model was developed using the SAS algorithm for the best subset regressor variables. The model incorporates these independent variables that are statistically selected in the previous section (UV, AT, and CU) and the TS as a dependent variable. The results are presented in Figure 11. This figure shows that the regression model is very significant and has a coefficient of variance (CV) of 3.6 and root mean square error of 3.09. The developed model is same as the one proposed by the different variable selection techniques:

$$
\mathrm{TS}=220.52-0.58 \mathrm{AT}-0.84 \mathrm{CU}-2.12 \mathrm{UV}
$$

Residual Analysis

The functional form of the model presented earlier was used to predict the tensile strength (TS), and the results were compared to find the residuals. Residuals are defined as

$$
e_{i}=y_{i}-y_{i}^{\prime}, \quad i=1,2 \cdots n
$$

where y_{i} is an observation and y_{i}^{\prime} is the corresponding fitted value. Since a residual may be viewed as
the duration between the data and the fit, it is a measure of the variability not explained by the model.

The adequacy of the model can be viewed from the plot of residual against predicted values of TS (Fig. 12). This plot indicates that the residuals can be contained in a horizontal band. The scatter indicates no trend inequality of variance, and, therefore, there is no obvious model defect.

Although small departures from normality do not affect the model greatly, gross nonnormality is potentially more serious. A very simple method of checking the normality assumption is to plot the residual on normal probability paper. Figure 12 also shows the normal probability plot of residuals and the cumulative percent, which shows a reasonably straight line. Slight deviation from the straight line can be attributed to small number of observations. ${ }^{17}$

Model II

Growth in the carbonyl group is an important indication of the extent of degradation in polymers. In this section, a linear multiple regression model will be developed with carbonyl growth as a dependent variable and weather parameters as independent variables.

Figure 17 Computer output (SAS) of general linear model procedure applied to LLDPE carbonyl data.

Variable Selection

The same procedures as used earlier for model I will be used. Figure 13 shows the results obtained when an SAS forward selection algorithm was applied to
the data. In this program, the cutoff value $\alpha=.05$ is specified. It is indicated in the results that the most highly correlated regressor with carbonyl growth is CU, and since the statistics associated with the model using CU is $F=524.8>$, which is greater

NORMAL PROBABILITY PLOT

Figure 18 Residual and normal probability plot of LLDPE carbonyl model.
than $F_{.05,1,11}=4.48, \mathrm{CU}$ is added to the equation. At step 2, the regressor having the largest partial correlation with carbonyl growth is UV, and since the partial F-statistic for this regressor is 6.79 , which exceeds $F_{\text {IN }}=F_{.05,1,10}=4.96, \mathrm{UV}$ is added to the model. At this point, the partial F-statistic $F_{\text {IN }}$ $=F_{.05,1,9}=5.12$ exceeds the F-value of all regressors, so the forward selection terminates with

$$
\mathrm{CA}=0.29+.012 \mathrm{UV}+.01 \mathrm{CU}
$$

as the final model.
The results of the backward elimination procedure for dependent variable CA are presented in Figure 14. Step 0 shows the results of fitting the full model. The smallest partial F-value is $F=0.18$, and it is associated with AH. Thus, since $F=0.18<F_{\text {out }}$ $=F_{.05,1,6}=5.99$, AH is removed from the model. At step 1, the results of fitting the five variables involving (AT, RD, UV, CR, CU) are shown. The
smallest partial F-value in this model, $F=0.88$ $<F_{\text {OUT }}=F_{.05,1,7}=5.59, \mathrm{AT}$ is removed from the model. At step 2, the results of fitting the four-variable model is shown. The smallest partial F-statistic in this model is $F=3.90$, associated with CU, and since this is less than $F_{\text {OUT }}=F_{.05,1,8}=5.32, \mathrm{CU}$ is removed from the model. Similarly, RD is also removed, and, finally, backward elimination terminates, yielding the final model

$$
\mathrm{CA}=0.287+0.12 \mathrm{UV}+.0004 \mathrm{CR}
$$

The SAS stepwise regression algorithm was used for stepwise regression, and the results are presented in Figure 15. At step 1, the procedure begins with no variables in the model and tries to add CU. Since the partial F-statistic at this step exceeds $F_{\text {IN }}$ $=F_{.05,1,11}=3.23, \mathrm{CU}$ is added to the model. Similarly, UV is also added, and for the other candidate regressor, F-values were found lower than $F_{\text {IN }}$. Therefore, the regression terminates with the model

$$
\mathrm{CA}=.29+.012 \mathrm{UV}+.01 \mathrm{CU}
$$

R^{2} and Mallow's C_{p} was determined for each combination of independent variable using the SAS algorithm. The results are presented in Figure 16. Analyzing the results indicates that the R^{2} value is within reasonable limits. Mallow's C_{p} is less than the number of parameters only at one point when the number of parameters is 4 (CU, UV, RD, CR), $C_{p}=3.95$, and $R^{2}=0.993$. The results indicated by forward, backward, and stepwise do not show a common selection trend. R^{2} and Mallow's C_{p} results are also different, which is not unusual. ${ }^{18}$ In order to have the model that includes all those independent variables that are suggested by different methods, all the variables selected were incorporated in the final model. These independent variables are CU, UV, RD, and CR.

Regression Analysis

Based on weather parameters selected in the previous section, a regression model was developed for growth in carbonyl peaks as a function of these variables. The results of the general linear models procedure of SAS are shown in Figure 17. The figure indicates a coefficient of variance (CV) $=5.07$ and root mean square error of .08 . Both of these values

Figure 19 Computer output (SAS) of stepwise forward selection procedure applied to LLDPE crystallinity data.
indicate that the developed model is reliable. The developed model is
$\mathrm{CA}=0.22-0.125 \mathrm{CU}+0.144 \mathrm{UV}$
$-0.004 R D+0.005 C R$

Residual Analysis

The adequacy of the model is very well exhibited by the plot of residuals against predicted values (Fig.

Figure 20 Computer output (SAS) of stepwise backward elimination procedure applied to LLDPE crystallinity data.
18). The scatter indicates no trends or curvature, and inequality of variance also indicates a reasonably good straight line. A slight deviation from a
straight line can be attributed to a small number of observations. This implies that there are no obvious defects in the developed model.

Figure 20 (continued from the previous page)

Model III

The percent crystallinity (CY) of polyethylene is observed to increase with the exposure of polymer to the natural environment. In this section, a regression model will be developed to present the
correlation between crystallinity and weather parameters.

Variables Selection

The SAS forward selection algorithm was used, and results are presented in Figure 19. The cutoff value

Figure 21 Computer output (SAS) of stepwise regression procedure applied to LLDPE crystallinity data.
$\alpha=0.05$ is preset, similar to the earlier two models. The most highly correlated with CY is CR, and since the F-statistic associated with the model using CR
($F=68.12$) is greater than $F_{.05,1,11}=4.48, \mathrm{CR}$ is added to the equation. In step 2 , the regressor having the largest partial correlation with percent crystal-

$N=13$	REGRESSION MODELS FOR DEPENDENT VARIABLE: CY			
NUMBER IN	R-Square	$C(P)$	VARIABLES	IN MODEL
MODEL				
1	0.00039603	570.051	RD	
1	0.00132731	569.512	UV	
1	0.00232594	568.933	AT	
1	0.31110677	390.063	AH	
1	0.85741582	73.59631	CU	
1	0.86096430	71.540716	CR	
2	0.00902399	567.053	AT RD	
2	0.01293424	564.788	AT UV	
2	0.04885118	543.982	UV RD	
2	0.33948825	375.622	UV AH	
2	0.34663948	371.479	AH RD	
2	0.47960128	294.457	AT AH	
2	0.92059458	38.998037	CU AH	
2	0.92151646	38.464013	AH CR	
2	0.92208489	38.134730	CU CR	
2	0.94441413	25.199829	CU UV	
2	0.94535850	24.652772	UV CR	
2	0.94594643	24.312197	CU RD	
2	0.94700637	23.698194	RD CR	
2	0.98366920	2.460118	AT CR	
2	0.98370062	2.441916	AT CU	
3	0.05067191	544.928	AT UV RD	
3	0.40508654	339.622	UV AH RD	
3	0.49725457	286.231	AT AH RD	
3	0.50157951	283.725	AT UV AH	
3	0.93185543	34.474843	CU AH CR	
3	0.94646894	26.009517	CU UV RD	
3	0.94769519	25.299177	UV RD CR	
3	0.95137817	23.165693	CU UV CR	
3	0.95405094	21.617408	CU RD CR	
3	0.95951153	18.454195	CU UV AH	
3	0.95959386	18.406504	UV AH CR	
3	0.95980429	18.284602	CU AH RD	
3	0.96000494	18.168372	AH RD CR	
3	0.98370065	4.441902	AT CU CR	
3	0.98582864	3.209197	AT CU AH	
3	0.98599912	3.110443	AT AH CR	
3	0.98774576	2.098645	AT RD CR	
3	0.98781682	2.057484	AT UV CR	
3	0.98794270	1.984565	AT CU RD	
3	0.98806946	1.911134	AT CU UV	

Figure 22 Computer output (SAS) of RSQUARE and Mallow's Cp applied to LLDPE crystallinity data.
linity is AT, and since the partial F-statistic for this regressor is 75.14 , which exceeds $F_{\text {IN }}=F_{.05,1,10}=4.96$, AT is added to the model. At this point, the partial F-statistic $F_{\text {IN }}=F_{.05,1,9}=5.12$ exceeds F-values of
all other regressors, so the forward selection terminates with the model

$$
\mathrm{CY}=43.23-0.287 \mathrm{AT}+0.003 \mathrm{CR} .
$$

The results of the backward elimination procedure

4	0.52048117	274.776	AT	UV AH	RD
4	0.95964689	20.375782	çu	UV AH	CR
4	0.95980435	20.284568	cu	UV AH	RD
4	0.96002108	20.159024	UV	AH RD	CR
4	0.96039682	19.941363	CU	AH RD	CR
4	0.96097146	19.608484	CU	UV RD	CR
4	0.98614891	5.023672	AT	CU AH	CR
4	0.98782073	4.055219	AT	UV RD	CR
4	0.98810361	3.891352	AT	CU UV	RD
4	0.98816026	3.858535	AT	CU RD	CR
4	0.98848003	3.673297	AT	CU UV	CR
4	0.98938560	3.148716	AT	AH RD	CR
4	0.98940197	3.139235	AT	UV AH	CR
4	0.98940791	3.135795	AT	CU AH	RD
4	0.98947997	3.094049	AT	cu UV	AH
5	0.96165079	21.214964	cu	UV AH	RD CR
5	0.98930390	5.196044	AT	cu uv	RD CR
5	0.98940488	5.137553	AT	UV AH	RD CR
5	0.98940828	5.135582	AT	Cu AH	RD CR
5	0.98948661	5.090204	AT	CU UV	AH RD
5	0.98950403	5.080114	AT	CU UV	AH CR
6	0.98964233	7.000000	AT	cu UV	AH RD CR

Figure 22 (continued from the previous page)
is presented in Figure 20. Step 0 shows the fitting of the full model. The smallest partial F-value is $0.08<F_{\text {OUT }}=F_{.05,1,6}=5.99 ; \mathrm{RD}$ is removed from the model. At step 1, the results of fitting the five variables involved (AT, AH, UV, CR, CU) are shown. The smallest partial F-value in this model is $F=0.02$, associated with CR. Since $F=0.02$ is less than $F_{\text {OUT }}=F_{.05,1,7}=5.59, \mathrm{CR}$ is removed from the model. At step 2, the results of fitting the fourvariable model is shown. The smallest partial F-statistic in this model is 1.07 , associated with AH, and since this is less than $F_{\text {OUT }}=F_{0.05,1,8}=5.32, \mathrm{AH}$ is removed from the model. Similarly, in step 4, UV is removed and, finally, a backward elimination procedure terminates, yielding the final model:

$$
\mathrm{CY}=43.31-0.29 \mathrm{AT}+.092 \mathrm{CU}
$$

It is worth mentioning that the intercept and coefficient of AT in backward elimination is close to the values obtained by the forward selection procedure.

The stepwise regression results are shown in Figure 21. As shown in step 1, there are no variables and the CR entered the model; since the partial F statistic at this step exceeds $F_{\text {IN }}=F_{.05,1,11}=3.23$, CR is added to the model. Similarly, in step 2, the F-statistic favors the addition of AT in the model. Finally, the program is terminated as the F-value of
the regressors was lower than $F_{\text {IN }}$, thereby terminating the stepwise algorithm with the final model:

$$
\mathrm{CY}=43.2-0.29 \mathrm{AT}+0.003 \mathrm{CR}
$$

R^{2} and Mallow's C_{p} are presented in Figure 22. As indicated in the figure, there is more than one instance when C_{p} is less than the number of parameters. Therefore, those independent variables suggested by stepwise procedures, AT, UV, CU, and CR, are selected for the model. A preliminary residual analysis was carried out, and it was observed that the scatter of residual is indicating a slight trend. In addition to this, normal probability was not exhibiting a straight-line behavior. Different combinations were used, and it was found that the best fit is obtained by considering AT, CU, and CR as independent variables.

Regression Analysis

A multiple linear regression model was developed for percent crystallinity change with weather parameters with AT, CU, and CR as independent variables. The results of the general linear model procedure of SAS are shown in Figure 23. The figure indicates a coefficient of variance (CV) $=1.98$ and root mean square error of 0.89 . Both of these values

Figure 23 Computer output (SAS) of general linear model procedure applied to LLDPE crystallinity data.
indicate that the developed model is adequate. The developed model is

$$
\mathrm{CY}=43.31-0.29 \mathrm{AT}+0.08 \mathrm{CU}+0.00008 \mathrm{CR}
$$

Residual Analysis

The results of residual and normal probability plots are shown in Figure 24. The plot of residuals does
not indicate any serious model inadequacies. The scatter does not have any trend or curvature or inequality of variance. The residuals are also plotted on normal probability paper. Since the residuals fall approximately along a straight line, it is concluded that there is no severe departure from normality. These plots do not indicate any serious model inadequacies.

Figure 24 Residual and normal probability plot of LLDPE crystallinity (cryst) model.

REFERENCES

1. A. H. Al-Rabeh, Modelling and simulation with local flavor, Presented at a Research Institute Technical Seminar, KFUPM/RI, Dhahran, Saudi Arabia, June, 1988.
2. B. W. Lindgren and G. W. McEIrath, Introduction to Probability and Statistics, Macmillan, London, 1971.
3. S. H. Hamid and W. H. Prichard, Polym. Plast. Technol. Eng., 27, 303-334 (1988).
4. S. H. Hamid, A. G. Maadhah, F. S. Qureshi, and M. B. Amin, Arabian J. Sci. Eng., 13, 503-531 (1988).
5. S. H. Hamid, F. S. Qureshi, M. B. Amin, and A. G. Maadhah, Polym. Plast. Technol. Eng., 28, 475-492 (1989).
6. F. S. Qureshi, S. H. Hamid, A. G. Maadhah, M. B. Amin, Progress in Rubber and Plastic Technol., 5, 114 (1989).
7. S. M. Zubair, Term Project, Ph.D. Program, Mechanical Engineering Department, Georgia Institute of Technology, Atlanta, Georgia (1986).
8. F. K. Meyer, Stabilization of Polyolefins for Outdoor Use, Presented at Petchem-Plast'83, Khobar, Saudi Arabia, November (1983).
9. P. D. Kruss, V. Bahel, M. A. Elhadidy, and D. Y. Ab-del-Nabi, ASHRAE Trans., 95, 3-13 (1989).
10. A. Davis and D. Sims, Weathering of Polymers, Academic, New York (1983).
11. R. J. Beckman and R. D. Cook, Technometrics, 25, 119-149 (1983).
12. D. R. Cox and E. J. Snell, Int. Stat. Rev., 23, 51-59 (1974).
13. R. J. Freund and R. C. Littell, SAS for Linear Models, A Guide to the ANOVA and GLM Procedure, SAS Institute, Cary, NC, 1981.
14. D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis, Wiley, New York, 1982.
15. C. L. Mallows, Technometrics, 15, 661-675 (1973).
16. SAS User's Guide: Statistics, SAS Institute, NC, 1982.
17. C. Daniel and F. S. Wood, Fitting Equation to Data, Wiley, New York, 1980.
18. K. N. Berk, Technometrics, 20, 1-6 (1978).

Received July 28, 1989
Accepted November 30, 1990

[^0]: * To whom correspondence should be addressed at Petroleum and Gas Technology Division, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

 Journal of Applied Polymer Science, Vol. 43, 651-678 (1991)
 (c) 1991 John Wiley \& Sons, Inc. CCC 0021-8995/91/040651-28\$04.00

